direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×F5, D10⋊3C4, D5.C23, D10.7C22, C10⋊(C2×C4), D5⋊(C2×C4), C5⋊(C22×C4), (C2×C10)⋊2C4, (C22×D5).3C2, SmallGroup(80,50)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C22×F5 |
Generators and relations for C22×F5
G = < a,b,c,d | a2=b2=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >
Subgroups: 142 in 54 conjugacy classes, 32 normal (7 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C23, D5, D5, C10, C22×C4, F5, D10, C2×C10, C2×F5, C22×D5, C22×F5
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, F5, C2×F5, C22×F5
Character table of C22×F5
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5 | 10A | 10B | 10C | |
size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | i | i | i | -i | i | -i | -i | -i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | 1 | -1 | -1 | 1 | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | -i | i | -i | i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | -i | i | -i | i | -i | i | i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | -i | -i | i | -i | i | i | i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | 1 | -1 | -1 | 1 | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | i | -i | i | -i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | i | -i | i | -i | i | -i | -i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ17 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | orthogonal lifted from C2×F5 |
ρ18 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ19 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ20 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from C2×F5 |
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(2 3 5 4)(7 8 10 9)(12 13 15 14)(17 18 20 19)
G:=sub<Sym(20)| (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)>;
G:=Group( (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19) );
G=PermutationGroup([[(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(2,3,5,4),(7,8,10,9),(12,13,15,14),(17,18,20,19)]])
G:=TransitiveGroup(20,16);
C22×F5 is a maximal subgroup of
D10.3Q8
C22×F5 is a maximal quotient of D5⋊M4(2) D10.C23 D4.F5 Q8.F5
Matrix representation of C22×F5 ►in GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 40 | 40 | 40 | 40 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
32 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 |
0 | 0 | 40 | 0 | 0 |
0 | 1 | 1 | 1 | 1 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,1,0,0,0,40,0,1,0,0,40,0,0,1,0,40,0,0,0],[32,0,0,0,0,0,40,0,0,1,0,0,0,40,1,0,0,0,0,1,0,0,40,0,1] >;
C22×F5 in GAP, Magma, Sage, TeX
C_2^2\times F_5
% in TeX
G:=Group("C2^2xF5");
// GroupNames label
G:=SmallGroup(80,50);
// by ID
G=gap.SmallGroup(80,50);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,40,804,219]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations
Export